Weak braided monoidal categories and their homotopy colimits
Theory and applications of categories, Tome 30 (2015), pp. 40-48.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the homotopy colimit construction for diagrams of categories with an operad action, recently introduced by Fiedorowicz, Stelzer and Vogt, has the desired homotopy type for diagrams of weak braided monoidal categories. This provides a more flexible way to realize $E_2$ spaces categorically.
Publié le :
Classification : Primary 18D10, 18D50, Secondary 55P48
Keywords: Weak braided monoidal categories, homotopy colimits, double loop spaces
@article{TAC_2015_30_a2,
     author = {Mirjam Solberg},
     title = {Weak braided monoidal categories and their homotopy colimits},
     journal = {Theory and applications of categories},
     pages = {40--48},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a2/}
}
TY  - JOUR
AU  - Mirjam Solberg
TI  - Weak braided monoidal categories and their homotopy colimits
JO  - Theory and applications of categories
PY  - 2015
SP  - 40
EP  - 48
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a2/
LA  - en
ID  - TAC_2015_30_a2
ER  - 
%0 Journal Article
%A Mirjam Solberg
%T Weak braided monoidal categories and their homotopy colimits
%J Theory and applications of categories
%D 2015
%P 40-48
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a2/
%G en
%F TAC_2015_30_a2
Mirjam Solberg. Weak braided monoidal categories and their homotopy colimits. Theory and applications of categories, Tome 30 (2015), pp. 40-48. http://geodesic.mathdoc.fr/item/TAC_2015_30_a2/