Weak braided monoidal categories and their homotopy colimits
Theory and applications of categories, Tome 30 (2015), pp. 40-48
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that the homotopy colimit construction for diagrams of categories with an operad action, recently introduced by Fiedorowicz, Stelzer and Vogt, has the desired homotopy type for diagrams of weak braided monoidal categories. This provides a more flexible way to realize $E_2$ spaces categorically.
Publié le :
Classification :
Primary 18D10, 18D50, Secondary 55P48
Keywords: Weak braided monoidal categories, homotopy colimits, double loop spaces
Keywords: Weak braided monoidal categories, homotopy colimits, double loop spaces
@article{TAC_2015_30_a2,
author = {Mirjam Solberg},
title = {Weak braided monoidal categories and their homotopy colimits},
journal = {Theory and applications of categories},
pages = {40--48},
year = {2015},
volume = {30},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a2/}
}
Mirjam Solberg. Weak braided monoidal categories and their homotopy colimits. Theory and applications of categories, Tome 30 (2015), pp. 40-48. http://geodesic.mathdoc.fr/item/TAC_2015_30_a2/