A model structure on internal categories in simplicial sets
Theory and applications of categories, Tome 30 (2015), pp. 704-750.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We put a model structure on the category of categories internal to simplicial sets. The weak equivalences in this model structure are preserved and reflected by the nerve functor to bisimplicial sets with the complete Segal space model structure. This model structure is shown to be a model for the homotopy theory of infinity categories. We also study the homotopy theory of internal presheaves over an internal category.
Publié le :
Classification : 55U40, 18C35, 18D99
Keywords: internal categories, complete Segal spaces, infinity categories
@article{TAC_2015_30_a19,
     author = {Geoffroy Horel},
     title = {A model structure on internal categories in simplicial sets},
     journal = {Theory and applications of categories},
     pages = {704--750},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a19/}
}
TY  - JOUR
AU  - Geoffroy Horel
TI  - A model structure on internal categories in simplicial sets
JO  - Theory and applications of categories
PY  - 2015
SP  - 704
EP  - 750
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a19/
LA  - en
ID  - TAC_2015_30_a19
ER  - 
%0 Journal Article
%A Geoffroy Horel
%T A model structure on internal categories in simplicial sets
%J Theory and applications of categories
%D 2015
%P 704-750
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a19/
%G en
%F TAC_2015_30_a19
Geoffroy Horel. A model structure on internal categories in simplicial sets. Theory and applications of categories, Tome 30 (2015), pp. 704-750. http://geodesic.mathdoc.fr/item/TAC_2015_30_a19/