Extensive categories and the size of an orbit
Theory and applications of categories, Tome 30 (2015), pp. 599-619.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

It is well known how to compute the number of orbits of a group action. A related problem, apparently not in the literature, is to determine the number of elements in an orbit. The theory that addresses this question leads to orbital extensive categories and to combinatorial aspects of such categories.
Publié le :
Classification : 05A99, 18B99, 20B05
Keywords: extensive category, Burnside-Frobenius lemma, conjugacy class of subgroups
@article{TAC_2015_30_a16,
     author = {Ernie Manes},
     title = {Extensive categories and the size of an orbit},
     journal = {Theory and applications of categories},
     pages = {599--619},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a16/}
}
TY  - JOUR
AU  - Ernie Manes
TI  - Extensive categories and the size of an orbit
JO  - Theory and applications of categories
PY  - 2015
SP  - 599
EP  - 619
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a16/
LA  - en
ID  - TAC_2015_30_a16
ER  - 
%0 Journal Article
%A Ernie Manes
%T Extensive categories and the size of an orbit
%J Theory and applications of categories
%D 2015
%P 599-619
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a16/
%G en
%F TAC_2015_30_a16
Ernie Manes. Extensive categories and the size of an orbit. Theory and applications of categories, Tome 30 (2015), pp. 599-619. http://geodesic.mathdoc.fr/item/TAC_2015_30_a16/