Extensive categories and the size of an orbit
Theory and applications of categories, Tome 30 (2015), pp. 599-619
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
It is well known how to compute the number of orbits of a group action. A related problem, apparently not in the literature, is to determine the number of elements in an orbit. The theory that addresses this question leads to orbital extensive categories and to combinatorial aspects of such categories.
Publié le :
Classification :
05A99, 18B99, 20B05
Keywords: extensive category, Burnside-Frobenius lemma, conjugacy class of subgroups
Keywords: extensive category, Burnside-Frobenius lemma, conjugacy class of subgroups
@article{TAC_2015_30_a16,
author = {Ernie Manes},
title = {Extensive categories and the size of an orbit},
journal = {Theory and applications of categories},
pages = {599--619},
year = {2015},
volume = {30},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a16/}
}
Ernie Manes. Extensive categories and the size of an orbit. Theory and applications of categories, Tome 30 (2015), pp. 599-619. http://geodesic.mathdoc.fr/item/TAC_2015_30_a16/