Normalizers, centralizers and action accessibility
Theory and applications of categories, Tome 30 (2015), pp. 410-432.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give several reformulations of action accessibility in the sense of D. Bourn and G. Janelidze. In particular we prove that a pointed exact protomodular category is action accessible if and only if for each normal monomorphism $\kappa:X\to A$ the normalizer of $< \kappa,\kappa>: X\to A\times A$ exists. This clarifies the connection between normalizers and action accessible categories established in a joint paper of D. Bourn and the author, in which it is proved that for pointed exact protomodular categories the existence of normalizers implies action accessibility. In addition we prove a pointed exact protomodular category with coequalizers is action accessible if centralizers of normal monomorphisms exist, and the normality of unions holds.
Publié le :
Classification : 18D35, 18A35, 18A05, 18A99
Keywords: action accessible, protomodular, Barr exact, normality, centrality, normalizer, centralizer
@article{TAC_2015_30_a11,
     author = {J. R. A. Gray},
     title = {Normalizers, centralizers and action accessibility},
     journal = {Theory and applications of categories},
     pages = {410--432},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a11/}
}
TY  - JOUR
AU  - J. R. A. Gray
TI  - Normalizers, centralizers and action accessibility
JO  - Theory and applications of categories
PY  - 2015
SP  - 410
EP  - 432
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a11/
LA  - en
ID  - TAC_2015_30_a11
ER  - 
%0 Journal Article
%A J. R. A. Gray
%T Normalizers, centralizers and action accessibility
%J Theory and applications of categories
%D 2015
%P 410-432
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a11/
%G en
%F TAC_2015_30_a11
J. R. A. Gray. Normalizers, centralizers and action accessibility. Theory and applications of categories, Tome 30 (2015), pp. 410-432. http://geodesic.mathdoc.fr/item/TAC_2015_30_a11/