Model categories with simple homotopy categories
Theory and applications of categories, Tome 30 (2015), pp. 15-39.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In the present article we describe constructions of model structures on general bicomplete categories. We are motivated by the following question: given a category C with a suitable subcategory wC, when is there a model structure on C with wC as the subcategory of weak equivalences? We begin exploring this question in the case where wC = F^{-1}(iso D) for some functor F : C --> D. We also prove properness of our constructions under minor assumptions and examine an application to the category of infinite graphs.
Publié le :
Classification : 18G55
Keywords: model category, graph
@article{TAC_2015_30_a1,
     author = {Jean-Marie Droz and Inna Zakharevich},
     title = {Model categories with simple homotopy categories},
     journal = {Theory and applications of categories},
     pages = {15--39},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a1/}
}
TY  - JOUR
AU  - Jean-Marie Droz
AU  - Inna Zakharevich
TI  - Model categories with simple homotopy categories
JO  - Theory and applications of categories
PY  - 2015
SP  - 15
EP  - 39
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a1/
LA  - en
ID  - TAC_2015_30_a1
ER  - 
%0 Journal Article
%A Jean-Marie Droz
%A Inna Zakharevich
%T Model categories with simple homotopy categories
%J Theory and applications of categories
%D 2015
%P 15-39
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a1/
%G en
%F TAC_2015_30_a1
Jean-Marie Droz; Inna Zakharevich. Model categories with simple homotopy categories. Theory and applications of categories, Tome 30 (2015), pp. 15-39. http://geodesic.mathdoc.fr/item/TAC_2015_30_a1/