On strong homotopy for quasi-schemoids
Theory and applications of categories, Tome 30 (2015), pp. 1-14.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A quasi-schemoid is a small category with a particular partition of the set of morphisms. We define a homotopy relation on the category of quasi-schemoids and study its fundamental properties. The homotopy set of self-homotopy equivalences on a quasi-schemoid is used as a homotopy invariant in the study. The main theorem enables us to deduce that the homotopy invariant for the quasi-schemoid induced by a finite group is isomorphic to the automorphism group of the given group. %These considerations are the first step to develop homotopy theory for quasi-schemoids.
Publié le :
Classification : 18D35, 05E30, 55U35
Keywords: Association scheme, small category, schemoids, homotopy
@article{TAC_2015_30_a0,
     author = {Katsuhiko Kuribayashi},
     title = {On strong homotopy for quasi-schemoids},
     journal = {Theory and applications of categories},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a0/}
}
TY  - JOUR
AU  - Katsuhiko Kuribayashi
TI  - On strong homotopy for quasi-schemoids
JO  - Theory and applications of categories
PY  - 2015
SP  - 1
EP  - 14
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a0/
LA  - en
ID  - TAC_2015_30_a0
ER  - 
%0 Journal Article
%A Katsuhiko Kuribayashi
%T On strong homotopy for quasi-schemoids
%J Theory and applications of categories
%D 2015
%P 1-14
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a0/
%G en
%F TAC_2015_30_a0
Katsuhiko Kuribayashi. On strong homotopy for quasi-schemoids. Theory and applications of categories, Tome 30 (2015), pp. 1-14. http://geodesic.mathdoc.fr/item/TAC_2015_30_a0/