Obvious natural morphisms of sheaves are unique
Theory and applications of categories, Tome 29 (2014), pp. 48-99.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove that a large class of natural transformations (consisting roughly of those constructed via composition from the ``functorial'' or ``base change'' transformations) between two functors of the form $... f^* g_* ...$ actually has only one element, and thus that any diagram of such maps necessarily commutes. We identify the precise axioms defining what we call a ``geofibered category'' that ensure that such a coherence theorem exists. Our results apply to all the usual sheaf-theoretic contexts of algebraic geometry. The analogous result that would include any other of the six functors remains unknown.
Publié le :
Classification : Primary 14A15, Secondary 18D30, 18A25
Keywords: commutative diagrams, coherence theorem, string diagrams, pullback, pushforward
@article{TAC_2014_29_a3,
     author = {Ryan Cohen Reich},
     title = {Obvious natural morphisms of sheaves are unique},
     journal = {Theory and applications of categories},
     pages = {48--99},
     publisher = {mathdoc},
     volume = {29},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a3/}
}
TY  - JOUR
AU  - Ryan Cohen Reich
TI  - Obvious natural morphisms of sheaves are unique
JO  - Theory and applications of categories
PY  - 2014
SP  - 48
EP  - 99
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2014_29_a3/
LA  - en
ID  - TAC_2014_29_a3
ER  - 
%0 Journal Article
%A Ryan Cohen Reich
%T Obvious natural morphisms of sheaves are unique
%J Theory and applications of categories
%D 2014
%P 48-99
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2014_29_a3/
%G en
%F TAC_2014_29_a3
Ryan Cohen Reich. Obvious natural morphisms of sheaves are unique. Theory and applications of categories, Tome 29 (2014), pp. 48-99. http://geodesic.mathdoc.fr/item/TAC_2014_29_a3/