Bicategorical fibration structures and stacks
Theory and applications of categories, Tome 29 (2014), pp. 836-873.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we introduce two notions - systems of fibrant objects and fibration structures--- which will allow us to associate to a bicategory $B$ a homotopy bicategory $Ho(B)$ in such a way that $Ho(B)$ is the universal way to add pseudo-inverses to weak equivalences in $B$. Furthermore, $Ho(B)$ is locally small when $B$ is and $Ho(B)$ is a 2-category when $B$ is. We thereby resolve two of the problems with known approaches to bicategorical localization. As an important example, we describe a fibration structure on the 2-category of prestacks on a site and prove that the resulting homotopy bicategory is the 2-category of stacks. We also show how this example can be restricted to obtain algebraic, differentiable and topological (respectively) stacks as homotopy categories of algebraic, differential and topological (respectively) prestacks.
Publié le :
Classification : Primary: 18D05, Secondary: 18G55, 14A20
Keywords: stacks, fibrant objects, homotopy bicategory, bicategories of fractions, algebraic stacks, differentiable stacks, topological stacks
@article{TAC_2014_29_a28,
     author = {Dorette A. Pronk and Michael A. Warren},
     title = {Bicategorical fibration structures and stacks},
     journal = {Theory and applications of categories},
     pages = {836--873},
     publisher = {mathdoc},
     volume = {29},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a28/}
}
TY  - JOUR
AU  - Dorette A. Pronk
AU  - Michael A. Warren
TI  - Bicategorical fibration structures and stacks
JO  - Theory and applications of categories
PY  - 2014
SP  - 836
EP  - 873
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2014_29_a28/
LA  - en
ID  - TAC_2014_29_a28
ER  - 
%0 Journal Article
%A Dorette A. Pronk
%A Michael A. Warren
%T Bicategorical fibration structures and stacks
%J Theory and applications of categories
%D 2014
%P 836-873
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2014_29_a28/
%G en
%F TAC_2014_29_a28
Dorette A. Pronk; Michael A. Warren. Bicategorical fibration structures and stacks. Theory and applications of categories, Tome 29 (2014), pp. 836-873. http://geodesic.mathdoc.fr/item/TAC_2014_29_a28/