Constructing model categories with prescribed fibrant objects
Theory and applications of categories, Tome 29 (2014), pp. 635-653.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We present a weak form of a recognition principle for Quillen model categories due to J.H. Smith. We use it to put a model category structure on the category of small categories enriched over a suitable monoidal simplicial model category. The proof uses a part of the model structure on small simplicial categories due to J. Bergner. We give an application of the weak form of Smith's result to left Bousfield localizations of categories of monoids in a suitable monoidal model category.
Publié le :
Classification : 18G55, 18D20
Keywords: model category, enriched category
@article{TAC_2014_29_a22,
     author = {Alexandru E. Stanculescu},
     title = {Constructing model categories with prescribed fibrant objects},
     journal = {Theory and applications of categories},
     pages = {635--653},
     publisher = {mathdoc},
     volume = {29},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a22/}
}
TY  - JOUR
AU  - Alexandru E. Stanculescu
TI  - Constructing model categories with prescribed fibrant objects
JO  - Theory and applications of categories
PY  - 2014
SP  - 635
EP  - 653
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2014_29_a22/
LA  - en
ID  - TAC_2014_29_a22
ER  - 
%0 Journal Article
%A Alexandru E. Stanculescu
%T Constructing model categories with prescribed fibrant objects
%J Theory and applications of categories
%D 2014
%P 635-653
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2014_29_a22/
%G en
%F TAC_2014_29_a22
Alexandru E. Stanculescu. Constructing model categories with prescribed fibrant objects. Theory and applications of categories, Tome 29 (2014), pp. 635-653. http://geodesic.mathdoc.fr/item/TAC_2014_29_a22/