On the image of the almost strict Morse n-category under almost strict n-functors
Theory and applications of categories, Tome 29 (2014), pp. 21-47.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In an earlier work, we constructed the almost strict Morse n-category $\mathcal X$ which extends Cohen and Jones and Segal's flow category. In this article, we define two other almost strict n-categories $\mathcal V$ and $\mathcal W$ where $\mathcal V$ is based on homomorphisms between real vector spaces and $\mathcal W$ consists of tuples of positive integers. The Morse index and the dimension of the Morse moduli spaces give rise to almost strict n-category functors $\mathcal F : \mathcal X \to \mathcal V$ and $\mathcal G : \mathcal X \to \mathcal W$.
Publié le :
Classification : 18B99, 18D99, 55U99, 58E05
Keywords: n-category, Morse theory, functors, moduli spaces
@article{TAC_2014_29_a2,
     author = {Sonja Hohloch},
     title = {On the image of the almost strict {Morse} n-category under almost strict 
n-functors},
     journal = {Theory and applications of categories},
     pages = {21--47},
     publisher = {mathdoc},
     volume = {29},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a2/}
}
TY  - JOUR
AU  - Sonja Hohloch
TI  - On the image of the almost strict Morse n-category under almost strict 
n-functors
JO  - Theory and applications of categories
PY  - 2014
SP  - 21
EP  - 47
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2014_29_a2/
LA  - en
ID  - TAC_2014_29_a2
ER  - 
%0 Journal Article
%A Sonja Hohloch
%T On the image of the almost strict Morse n-category under almost strict 
n-functors
%J Theory and applications of categories
%D 2014
%P 21-47
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2014_29_a2/
%G en
%F TAC_2014_29_a2
Sonja Hohloch. On the image of the almost strict Morse n-category under almost strict 
n-functors. Theory and applications of categories, Tome 29 (2014), pp. 21-47. http://geodesic.mathdoc.fr/item/TAC_2014_29_a2/