Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We study the monoidal closed category of symmetric multicategories, especially in relation with its cartesian structure and with sequential multicategories (whose arrows are sequences of concurrent arrows in a given category). Then we consider cartesian multicategories in a similar perspective and develop some peculiar items such as algebraic products. Several classical facts arise as a consequence of this analysis when some of the multicategories involved are representable.
@article{TAC_2014_29_a18, author = {Claudio Pisani}, title = {Sequential multicategories}, journal = {Theory and applications of categories}, pages = {496--541}, publisher = {mathdoc}, volume = {29}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a18/} }
Claudio Pisani. Sequential multicategories. Theory and applications of categories, Tome 29 (2014), pp. 496-541. http://geodesic.mathdoc.fr/item/TAC_2014_29_a18/