Voir la notice de l'article provenant de la source Theory and Applications of Categories website
By a `completion' on a 2-category K we mean here an idempotent pseudomonad on K. We are particularly interested in pseudomonads that arise from KZ-doctrines. Motivated by a question of Lawvere, we compare the Cauchy completion, defined in the setting of V-Cat for V a symmetric monoidal closed category, with the Grothendieck completion, defined in the setting of S-Indexed Cat for S a topos. To this end we introduce a unified setting (`indexed enriched category theory') in which to formulate and study certain properties of KZ-doctrines. We find that, whereas all of the KZ-doctrines that are relevant to this discussion (Karoubi, Cauchy, Stack, Grothendieck) may be regarded as `bounded', only the Cauchy and the Grothendieck completions are `tightly bounded' - two notions that we introduce and study in this paper. Tightly bounded KZ-doctrines are shown to be idempotent. We also show, in a different approach to answering the motivating question, that the Cauchy completion (defined using `distributors') and the Grothendieck completion (defined using `generalized functors') are actually equivalent constructions.
@article{TAC_2013_28_a7, author = {Marta Bunge}, title = {Tightly bounded completions}, journal = {Theory and applications of categories}, pages = {213--240}, publisher = {mathdoc}, volume = {28}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a7/} }
Marta Bunge. Tightly bounded completions. Theory and applications of categories, Tome 28 (2013), pp. 213-240. http://geodesic.mathdoc.fr/item/TAC_2013_28_a7/