Tannaka duality and convolution for duoidal categories
Theory and applications of categories, Tome 28 (2013), pp. 166-205.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Given a horizontal monoid $M$ in a duoidal category $\cal F$, we examine the relationship between bimonoid structures on $M$ and monoidal structures on the category $\cal F^{\ast M}$ of right $M$-modules which lift the vertical monoidal structure of $\cal F$. We obtain our result using a variant of the so-called Tannaka adjunction; that is, an adjunction inducing the equivalence which expresses Tannaka duality. The approach taken utilizes hom-enriched categories rather than categories on which a monoidal category acts (``actegories''). The requirement of enrichment in $\cal F$ itself demands the existence of some internal homs, leading to the consideration of convolution for duoidal categories. Proving that certain hom-functors are monoidal, and so take monoids to monoids, unifies classical convolution in algebra and Day convolution for categories. Hopf bimonoids are defined leading to a lifting of closed structures on $\cal F$ to $\cal F^{\ast M}$. We introduce the concept of warping monoidal structures and this permits the construction of new duoidal categories.
Publié le :
Classification : 18D35, 18D10, 20J06
Keywords: duoidal, duoid, bimonoid, Tannaka duality, monoidal category, closed category, Hopf monoid
@article{TAC_2013_28_a5,
     author = {Thomas Booker and Ross Street},
     title = {Tannaka duality and convolution for duoidal categories},
     journal = {Theory and applications of categories},
     pages = {166--205},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a5/}
}
TY  - JOUR
AU  - Thomas Booker
AU  - Ross Street
TI  - Tannaka duality and convolution for duoidal categories
JO  - Theory and applications of categories
PY  - 2013
SP  - 166
EP  - 205
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a5/
LA  - en
ID  - TAC_2013_28_a5
ER  - 
%0 Journal Article
%A Thomas Booker
%A Ross Street
%T Tannaka duality and convolution for duoidal categories
%J Theory and applications of categories
%D 2013
%P 166-205
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a5/
%G en
%F TAC_2013_28_a5
Thomas Booker; Ross Street. Tannaka duality and convolution for duoidal categories. Theory and applications of categories, Tome 28 (2013), pp. 166-205. http://geodesic.mathdoc.fr/item/TAC_2013_28_a5/