Voir la notice de l'article provenant de la source Theory and Applications of Categories website
An ergodic action of a compact quantum group $G$ on an operator algebra $A$ can be interpreted as a quantum homogeneous space for $G$. Such an action gives rise to the category of finite equivariant Hilbert modules over $A$, which has a module structure over the tensor category $Rep(G)$ of finite-dimensional representations of $G$. We show that there is a one-to-one correspondence between the quantum $G$-homogeneous spaces up to equivariant Morita equivalence, and indecomposable module $C^*$-categories over $Rep(G)$ up to natural equivalence. This gives a global approach to the duality theory for ergodic actions as developed by C. Pinzari and J. Roberts.
@article{TAC_2013_28_a30, author = {Kenny De Commer and Makoto Yamashita}, title = {Tannaka--Krein duality for compact quantum homogeneous {spaces. I.} {General} theory}, journal = {Theory and applications of categories}, pages = {1099--1138}, publisher = {mathdoc}, volume = {28}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a30/} }
TY - JOUR AU - Kenny De Commer AU - Makoto Yamashita TI - Tannaka--Krein duality for compact quantum homogeneous spaces. I. General theory JO - Theory and applications of categories PY - 2013 SP - 1099 EP - 1138 VL - 28 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2013_28_a30/ LA - en ID - TAC_2013_28_a30 ER -
Kenny De Commer; Makoto Yamashita. Tannaka--Krein duality for compact quantum homogeneous spaces. I. General theory. Theory and applications of categories, Tome 28 (2013), pp. 1099-1138. http://geodesic.mathdoc.fr/item/TAC_2013_28_a30/