Tannaka--Krein duality for compact quantum homogeneous spaces.
I. General theory
Theory and applications of categories, Tome 28 (2013), pp. 1099-1138
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
An ergodic action of a compact quantum group $G$ on an operator algebra $A$ can be interpreted as a quantum homogeneous space for $G$. Such an action gives rise to the category of finite equivariant Hilbert modules over $A$, which has a module structure over the tensor category $Rep(G)$ of finite-dimensional representations of $G$. We show that there is a one-to-one correspondence between the quantum $G$-homogeneous spaces up to equivariant Morita equivalence, and indecomposable module $C^*$-categories over $Rep(G)$ up to natural equivalence. This gives a global approach to the duality theory for ergodic actions as developed by C. Pinzari and J. Roberts.
Publié le :
Classification :
17B37, 20G42, 46L08
Keywords: compact quantum groups, $C^*$-algebras, Hilbert modules, ergodic actions, module categories
Keywords: compact quantum groups, $C^*$-algebras, Hilbert modules, ergodic actions, module categories
@article{TAC_2013_28_a30,
author = {Kenny De Commer and Makoto Yamashita},
title = {Tannaka--Krein duality for compact quantum homogeneous {spaces.
I.} {General} theory},
journal = {Theory and applications of categories},
pages = {1099--1138},
year = {2013},
volume = {28},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a30/}
}
TY - JOUR AU - Kenny De Commer AU - Makoto Yamashita TI - Tannaka--Krein duality for compact quantum homogeneous spaces. I. General theory JO - Theory and applications of categories PY - 2013 SP - 1099 EP - 1138 VL - 28 UR - http://geodesic.mathdoc.fr/item/TAC_2013_28_a30/ LA - en ID - TAC_2013_28_a30 ER -
Kenny De Commer; Makoto Yamashita. Tannaka--Krein duality for compact quantum homogeneous spaces. I. General theory. Theory and applications of categories, Tome 28 (2013), pp. 1099-1138. http://geodesic.mathdoc.fr/item/TAC_2013_28_a30/