Multitensors as monads on categories of enriched graphs
Theory and applications of categories, Tome 28 (2013), pp. 857-932.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we unify the developments of Batanin [1998], Batanin-Weber [2011] and Cheng [2011] into a single framework in which the interplay between multitensors on a category $V$, and monads on the category $\cal G V$ of graphs enriched in $V$, is taken as fundamental. The material presented here is the conceptual background for subsequent work: in Batanin-Cisinski-Weber [2013] the Gray tensor product of 2-categories and the Crans [1999] tensor product of Gray categories are exhibited as existing within our framework, and in Weber [2013] the explicit construction of the funny tensor product of categories is generalised to a large class of Batanin operads.
Publié le :
Classification : 18A05, 18D20, 18D50, 55P48
Keywords: multitensors, enriched graphs, higher categories, higher operads
@article{TAC_2013_28_a25,
     author = {Mark Weber},
     title = {Multitensors as monads on categories of enriched graphs},
     journal = {Theory and applications of categories},
     pages = {857--932},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a25/}
}
TY  - JOUR
AU  - Mark Weber
TI  - Multitensors as monads on categories of enriched graphs
JO  - Theory and applications of categories
PY  - 2013
SP  - 857
EP  - 932
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a25/
LA  - en
ID  - TAC_2013_28_a25
ER  - 
%0 Journal Article
%A Mark Weber
%T Multitensors as monads on categories of enriched graphs
%J Theory and applications of categories
%D 2013
%P 857-932
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a25/
%G en
%F TAC_2013_28_a25
Mark Weber. Multitensors as monads on categories of enriched graphs. Theory and applications of categories, Tome 28 (2013), pp. 857-932. http://geodesic.mathdoc.fr/item/TAC_2013_28_a25/