Multitensor lifting and strictly unital higher category theory
Theory and applications of categories, Tome 28 (2013), pp. 804-856.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this article we extend the theory of lax monoidal structures, also known as multitensors, and the monads on categories of enriched graphs that they give rise to. Our first principal result - the lifting theorem for multitensors - enables us to see the Gray tensor product of 2-categories and the Crans tensor product of Gray categories as part of this framework. We define weak $n$-categories with strict units by means of a notion of reduced higher operad, using the theory of algebraic weak factorisation systems. Our second principal result is to establish a lax tensor product on the category of weak $n$-categories with strict units, so that enriched categories with respect to this tensor product are exactly weak (n+1)-categories with strict units.
Publié le :
Classification : 18A05, 18D20, 18D50, 55P48
Keywords: multitensors, strictly unital higher categories, higher operads
@article{TAC_2013_28_a24,
     author = {Michael Batanin and Denis-Charles Cisinski and Mark Weber},
     title = {Multitensor lifting and strictly unital higher category theory},
     journal = {Theory and applications of categories},
     pages = {804--856},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a24/}
}
TY  - JOUR
AU  - Michael Batanin
AU  - Denis-Charles Cisinski
AU  - Mark Weber
TI  - Multitensor lifting and strictly unital higher category theory
JO  - Theory and applications of categories
PY  - 2013
SP  - 804
EP  - 856
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a24/
LA  - en
ID  - TAC_2013_28_a24
ER  - 
%0 Journal Article
%A Michael Batanin
%A Denis-Charles Cisinski
%A Mark Weber
%T Multitensor lifting and strictly unital higher category theory
%J Theory and applications of categories
%D 2013
%P 804-856
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a24/
%G en
%F TAC_2013_28_a24
Michael Batanin; Denis-Charles Cisinski; Mark Weber. Multitensor lifting and strictly unital higher category theory. Theory and applications of categories, Tome 28 (2013), pp. 804-856. http://geodesic.mathdoc.fr/item/TAC_2013_28_a24/