Complicial structures in the nerves of omega-categories
Theory and applications of categories, Tome 28 (2013), pp. 779-803.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

It is known that strict omega-categories are equivalent through the nerve functor to complicial sets and to sets with complicial identities. It follows that complicial sets are equivalent to sets with complicial identities. We discuss these equivalences. In particular we give a conceptual proof that the nerves of omega-categories are complicial sets, and a direct proof that complicial sets are sets with complicial identities.
Publié le :
Classification : 18D05
Keywords: complicial set, complicial identities, omega-category
@article{TAC_2013_28_a23,
     author = {Richard Steiner},
     title = {Complicial structures in the nerves of omega-categories},
     journal = {Theory and applications of categories},
     pages = {779--803},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a23/}
}
TY  - JOUR
AU  - Richard Steiner
TI  - Complicial structures in the nerves of omega-categories
JO  - Theory and applications of categories
PY  - 2013
SP  - 779
EP  - 803
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a23/
LA  - en
ID  - TAC_2013_28_a23
ER  - 
%0 Journal Article
%A Richard Steiner
%T Complicial structures in the nerves of omega-categories
%J Theory and applications of categories
%D 2013
%P 779-803
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a23/
%G en
%F TAC_2013_28_a23
Richard Steiner. Complicial structures in the nerves of omega-categories. Theory and applications of categories, Tome 28 (2013), pp. 779-803. http://geodesic.mathdoc.fr/item/TAC_2013_28_a23/