Enriched indexed categories
Theory and applications of categories, Tome 28 (2013), pp. 616-695
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We develop a theory of categories which are simultaneously (1) indexed over a base category $S$ with finite products, and (2) enriched over an $S$-indexed monoidal category $V$. This includes classical enriched categories, indexed and fibered categories, and internal categories as special cases. We then describe the appropriate notion of ``limit'' for such enriched indexed categories, and show that they admit ``free cocompletions'' constructed as usual with a Yoneda embedding.
Classification :
18D20, 18D30
Keywords: monoidal category, enriched category, indexed category, fibered category
Keywords: monoidal category, enriched category, indexed category, fibered category
@article{TAC_2013_28_a20,
author = {Michael Shulman},
title = {Enriched indexed categories},
journal = {Theory and applications of categories},
pages = {616--695},
year = {2013},
volume = {28},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a20/}
}
Michael Shulman. Enriched indexed categories. Theory and applications of categories, Tome 28 (2013), pp. 616-695. http://geodesic.mathdoc.fr/item/TAC_2013_28_a20/