Enriched indexed categories
Theory and applications of categories, Tome 28 (2013), pp. 616-695.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We develop a theory of categories which are simultaneously (1) indexed over a base category $S$ with finite products, and (2) enriched over an $S$-indexed monoidal category $V$. This includes classical enriched categories, indexed and fibered categories, and internal categories as special cases. We then describe the appropriate notion of ``limit'' for such enriched indexed categories, and show that they admit ``free cocompletions'' constructed as usual with a Yoneda embedding.
Classification : 18D20, 18D30
Keywords: monoidal category, enriched category, indexed category, fibered category
@article{TAC_2013_28_a20,
     author = {Michael Shulman},
     title = {Enriched indexed categories},
     journal = {Theory and applications of categories},
     pages = {616--695},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a20/}
}
TY  - JOUR
AU  - Michael Shulman
TI  - Enriched indexed categories
JO  - Theory and applications of categories
PY  - 2013
SP  - 616
EP  - 695
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a20/
LA  - en
ID  - TAC_2013_28_a20
ER  - 
%0 Journal Article
%A Michael Shulman
%T Enriched indexed categories
%J Theory and applications of categories
%D 2013
%P 616-695
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a20/
%G en
%F TAC_2013_28_a20
Michael Shulman. Enriched indexed categories. Theory and applications of categories, Tome 28 (2013), pp. 616-695. http://geodesic.mathdoc.fr/item/TAC_2013_28_a20/