Subgroupoids and quotient theories
Theory and applications of categories, Tome 28 (2013), pp. 541-551.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Moerdijk's site description for equivariant sheaf toposes on open topological groupoids is used to give a proof for the (known, but apparently unpublished) proposition that if $H$ is a subgroupoid of an open topological groupoid $G$, then the topos of equivariant sheaves on $H$ is a subtopos of the topos of equivariant sheaves on $G$. This proposition is then applied to the study of quotient geometric theories and subtoposes. In particular, an intrinsic characterization is given of those subgroupoids that are definable by quotient theories.
Publié le :
Classification : 18B25, 03G30, 18F99
Keywords: Grothendieck toposes, sheaves on topological groupoids, categorical logic
@article{TAC_2013_28_a17,
     author = {Henrik Forssell},
     title = {Subgroupoids and quotient theories},
     journal = {Theory and applications of categories},
     pages = {541--551},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a17/}
}
TY  - JOUR
AU  - Henrik Forssell
TI  - Subgroupoids and quotient theories
JO  - Theory and applications of categories
PY  - 2013
SP  - 541
EP  - 551
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a17/
LA  - en
ID  - TAC_2013_28_a17
ER  - 
%0 Journal Article
%A Henrik Forssell
%T Subgroupoids and quotient theories
%J Theory and applications of categories
%D 2013
%P 541-551
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a17/
%G en
%F TAC_2013_28_a17
Henrik Forssell. Subgroupoids and quotient theories. Theory and applications of categories, Tome 28 (2013), pp. 541-551. http://geodesic.mathdoc.fr/item/TAC_2013_28_a17/