Free products of higher operad algebras
Theory and applications of categories, Tome 28 (2013), pp. 24-65.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product of 2-categories. In this paper we continue the developments of [Batanin-Weber, 2011], [Weber, 2011] and [Batanin-Cisinski-Weber, 2011] by understanding the natural generalisations of Gray's little brother, the funny tensor product of categories. In fact we exhibit for any higher categorical structure definable by a normalised n-operad in the sense of Batanin, an analogous tensor product which forms a symmetric monoidal closed structure on the category of algebras of the operad.
Publié le :
Classification : 18A05, 18D20, 18D50, 55P48
Keywords: operads, higher categories, funny tensor product
@article{TAC_2013_28_a1,
     author = {Mark Weber},
     title = {Free products of higher operad algebras},
     journal = {Theory and applications of categories},
     pages = {24--65},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a1/}
}
TY  - JOUR
AU  - Mark Weber
TI  - Free products of higher operad algebras
JO  - Theory and applications of categories
PY  - 2013
SP  - 24
EP  - 65
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a1/
LA  - en
ID  - TAC_2013_28_a1
ER  - 
%0 Journal Article
%A Mark Weber
%T Free products of higher operad algebras
%J Theory and applications of categories
%D 2013
%P 24-65
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a1/
%G en
%F TAC_2013_28_a1
Mark Weber. Free products of higher operad algebras. Theory and applications of categories, Tome 28 (2013), pp. 24-65. http://geodesic.mathdoc.fr/item/TAC_2013_28_a1/