Composition of modules for lax functors
Theory and applications of categories, CT2011, Tome 27 (2012), pp. 393-444.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study the composition of modules between lax functors of weak double categories. We adapt the bicategorical notion of local cocompleteness to weak double categories, which the codomain of our lax functors will be assumed to satisfy. We introduce a notion of factorization of cells, which most weak double categories of interest possess, and which is sufficient to guarantee the strong representability of composites of modules between lax functors whose domain satisfies it.
Publié le :
Classification : 18D05, 18D25
Keywords: double category, lax functor, module, modulation, representability
@article{TAC_2012_27_a15,
     author = {Robert Par\'e},
     title = {Composition of modules for lax functors},
     journal = {Theory and applications of categories},
     pages = {393--444},
     publisher = {mathdoc},
     volume = {27},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_27_a15/}
}
TY  - JOUR
AU  - Robert Paré
TI  - Composition of modules for lax functors
JO  - Theory and applications of categories
PY  - 2012
SP  - 393
EP  - 444
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_27_a15/
LA  - en
ID  - TAC_2012_27_a15
ER  - 
%0 Journal Article
%A Robert Paré
%T Composition of modules for lax functors
%J Theory and applications of categories
%D 2012
%P 393-444
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_27_a15/
%G en
%F TAC_2012_27_a15
Robert Paré. Composition of modules for lax functors. Theory and applications of categories, CT2011, Tome 27 (2012), pp. 393-444. http://geodesic.mathdoc.fr/item/TAC_2012_27_a15/