Lawvere completeness as a topological property
Theory and applications of categories, CT2011, Tome 27 (2012), pp. 242-262.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Lawvere's notion of completeness for quantale-enriched categories has been extended to the theory of lax algebras under the name of L-completeness. In this paper we introduce the corresponding morphism concept and examine its properties. We explore some important relativized topological concepts like separatedness, denseness, compactness and compactification with respect to L-complete morphisms. Moreover, we show that separated L-complete morphisms belong to a factorization system.
Publié le :
Classification : 18A05, 18A20, 18A32, 18B30, 18C15, 18D20, 54A20, 54B30, 54C10
Keywords: Completeness, compactness, lax algebra, module, proper map, injectivity, fibrewise sober, factorization system
@article{TAC_2012_27_a11,
     author = {Serdar Sozubek},
     title = {Lawvere completeness as a topological property},
     journal = {Theory and applications of categories},
     pages = {242--262},
     publisher = {mathdoc},
     volume = {27},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_27_a11/}
}
TY  - JOUR
AU  - Serdar Sozubek
TI  - Lawvere completeness as a topological property
JO  - Theory and applications of categories
PY  - 2012
SP  - 242
EP  - 262
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_27_a11/
LA  - en
ID  - TAC_2012_27_a11
ER  - 
%0 Journal Article
%A Serdar Sozubek
%T Lawvere completeness as a topological property
%J Theory and applications of categories
%D 2012
%P 242-262
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_27_a11/
%G en
%F TAC_2012_27_a11
Serdar Sozubek. Lawvere completeness as a topological property. Theory and applications of categories, CT2011, Tome 27 (2012), pp. 242-262. http://geodesic.mathdoc.fr/item/TAC_2012_27_a11/