Voir la notice de l'article provenant de la source Theory and Applications of Categories website
For a small category $B$ and a double category $\mathbb D$, let ${\rm Lax}_N(B,\mathbb D)$ denote the category whose objects are vertical normal lax functors $B\to\mathbb D$ and morphisms are horizontal lax transformations. It is well known that $Lax_N(B, \mathbb Cat) \simeq Cat/B$, where $\mathbb Cat$ is the double category of small categories, functors, and profunctors. We generalized this equivalence to certain double categories, in the case where $B$ is a finite poset. Street showed that $Y\to B$ is exponentiable in $Cat/B$ if and only if the corresponding normal lax functor $B\to \mathbb Cat$ is a pseudo-functor. Using our generalized equivalence, we show that a morphism $Y\to B$ is exponentiable in $ {\mathbb D}_0/B$ if and only if the corresponding normal lax functor $B\to\mathbb D$ is a pseudo-functor plus an additional condition that holds for all $X\to !B$ in $Cat$. Thus, we obtain a single theorem which yields characterizations of certain exponentiable morphisms of small categories, topological spaces, locales, and posets.
@article{TAC_2012_27_a1, author = {Susan Niefield}, title = {Exponentiability via double categories}, journal = {Theory and applications of categories}, pages = {10--26}, publisher = {mathdoc}, volume = {27}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2012_27_a1/} }
Susan Niefield. Exponentiability via double categories. Theory and applications of categories, CT2011, Tome 27 (2012), pp. 10-26. http://geodesic.mathdoc.fr/item/TAC_2012_27_a1/