Exponentiability via double categories
Theory and applications of categories, CT2011, Tome 27 (2012), pp. 10-26.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a small category $B$ and a double category $\mathbb D$, let ${\rm Lax}_N(B,\mathbb D)$ denote the category whose objects are vertical normal lax functors $B\to\mathbb D$ and morphisms are horizontal lax transformations. It is well known that $Lax_N(B, \mathbb Cat) \simeq Cat/B$, where $\mathbb Cat$ is the double category of small categories, functors, and profunctors. We generalized this equivalence to certain double categories, in the case where $B$ is a finite poset. Street showed that $Y\to B$ is exponentiable in $Cat/B$ if and only if the corresponding normal lax functor $B\to \mathbb Cat$ is a pseudo-functor. Using our generalized equivalence, we show that a morphism $Y\to B$ is exponentiable in $ {\mathbb D}_0/B$ if and only if the corresponding normal lax functor $B\to\mathbb D$ is a pseudo-functor plus an additional condition that holds for all $X\to !B$ in $Cat$. Thus, we obtain a single theorem which yields characterizations of certain exponentiable morphisms of small categories, topological spaces, locales, and posets.
Publié le :
Classification : 18B30, 18A40, 18A25, 54C35, 54F05, 06F30
Keywords: exponentiable space, function space, lax slice, specialization order
@article{TAC_2012_27_a1,
     author = {Susan Niefield},
     title = {Exponentiability via double categories},
     journal = {Theory and applications of categories},
     pages = {10--26},
     publisher = {mathdoc},
     volume = {27},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_27_a1/}
}
TY  - JOUR
AU  - Susan Niefield
TI  - Exponentiability via double categories
JO  - Theory and applications of categories
PY  - 2012
SP  - 10
EP  - 26
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_27_a1/
LA  - en
ID  - TAC_2012_27_a1
ER  - 
%0 Journal Article
%A Susan Niefield
%T Exponentiability via double categories
%J Theory and applications of categories
%D 2012
%P 10-26
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_27_a1/
%G en
%F TAC_2012_27_a1
Susan Niefield. Exponentiability via double categories. Theory and applications of categories, CT2011, Tome 27 (2012), pp. 10-26. http://geodesic.mathdoc.fr/item/TAC_2012_27_a1/