Internal categories, anafunctors and localisations
Theory and applications of categories, Tome 26 (2012), pp. 788-829
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
In this article we review the theory of anafunctors introduced by Makkai and Bartels, and show that given a subcanonical site $S$, one can form a bicategorical localisation of various 2-categories of internal categories or groupoids at weak equivalences using anafunctors as 1-arrows. This unifies a number of proofs throughout the literature, using the fewest assumptions possible on $S$.
Publié le :
Classification :
Primary 18D99, Secondary 18F10, 18D05, 22A22
Keywords: internal categories, anafunctors, localization, bicategory of fractions
Keywords: internal categories, anafunctors, localization, bicategory of fractions
@article{TAC_2012_26_a28,
author = {David Michael Roberts},
title = {Internal categories, anafunctors and localisations},
journal = {Theory and applications of categories},
pages = {788--829},
year = {2012},
volume = {26},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/}
}
David Michael Roberts. Internal categories, anafunctors and localisations. Theory and applications of categories, Tome 26 (2012), pp. 788-829. http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/