Internal categories, anafunctors and localisations
Theory and applications of categories, Tome 26 (2012), pp. 788-829.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this article we review the theory of anafunctors introduced by Makkai and Bartels, and show that given a subcanonical site $S$, one can form a bicategorical localisation of various 2-categories of internal categories or groupoids at weak equivalences using anafunctors as 1-arrows. This unifies a number of proofs throughout the literature, using the fewest assumptions possible on $S$.
Publié le :
Classification : Primary 18D99, Secondary 18F10, 18D05, 22A22
Keywords: internal categories, anafunctors, localization, bicategory of fractions
@article{TAC_2012_26_a28,
     author = {David Michael Roberts},
     title = {Internal categories, anafunctors and localisations},
     journal = {Theory and applications of categories},
     pages = {788--829},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/}
}
TY  - JOUR
AU  - David Michael Roberts
TI  - Internal categories, anafunctors and localisations
JO  - Theory and applications of categories
PY  - 2012
SP  - 788
EP  - 829
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/
LA  - en
ID  - TAC_2012_26_a28
ER  - 
%0 Journal Article
%A David Michael Roberts
%T Internal categories, anafunctors and localisations
%J Theory and applications of categories
%D 2012
%P 788-829
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/
%G en
%F TAC_2012_26_a28
David Michael Roberts. Internal categories, anafunctors and localisations. Theory and applications of categories, Tome 26 (2012), pp. 788-829. http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/