Voir la notice de l'article provenant de la source Theory and Applications of Categories website
In this article we review the theory of anafunctors introduced by Makkai and Bartels, and show that given a subcanonical site $S$, one can form a bicategorical localisation of various 2-categories of internal categories or groupoids at weak equivalences using anafunctors as 1-arrows. This unifies a number of proofs throughout the literature, using the fewest assumptions possible on $S$.
@article{TAC_2012_26_a28, author = {David Michael Roberts}, title = {Internal categories, anafunctors and localisations}, journal = {Theory and applications of categories}, pages = {788--829}, publisher = {mathdoc}, volume = {26}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/} }
David Michael Roberts. Internal categories, anafunctors and localisations. Theory and applications of categories, Tome 26 (2012), pp. 788-829. http://geodesic.mathdoc.fr/item/TAC_2012_26_a28/