Modeling stable one-types
Theory and applications of categories, Tome 26 (2012), pp. 520-537.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Classification of homotopy $n$-types has focused on developing algebraic categories which are equivalent to categories of $n$-types. We expand this theory by providing algebraic models of homotopy-theoretic constructions for stable one-types. These include a model for the Postnikov one-truncation of the sphere spectrum, and for its action on the model of a stable one-type. We show that a bicategorical cokernel introduced by Vitale models the cofiber of a map between stable one-types, and apply this to develop an algebraic model for the Postnikov data of a stable one-type.
Publié le :
Classification : 18B40, 18D10, 55P42, 55S45
Keywords: stable homotopy one-type, Picard groupoid
@article{TAC_2012_26_a19,
     author = {Niles Johnson and Ang\'elica M. Osorno},
     title = {Modeling stable one-types},
     journal = {Theory and applications of categories},
     pages = {520--537},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a19/}
}
TY  - JOUR
AU  - Niles Johnson
AU  - Angélica M. Osorno
TI  - Modeling stable one-types
JO  - Theory and applications of categories
PY  - 2012
SP  - 520
EP  - 537
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a19/
LA  - en
ID  - TAC_2012_26_a19
ER  - 
%0 Journal Article
%A Niles Johnson
%A Angélica M. Osorno
%T Modeling stable one-types
%J Theory and applications of categories
%D 2012
%P 520-537
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a19/
%G en
%F TAC_2012_26_a19
Niles Johnson; Angélica M. Osorno. Modeling stable one-types. Theory and applications of categories, Tome 26 (2012), pp. 520-537. http://geodesic.mathdoc.fr/item/TAC_2012_26_a19/