Biequivalences in tricategories
Theory and applications of categories, Tome 26 (2012), pp. 349-384.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that every internal biequivalence in a tricategory $T$ is part of a biadjoint biequivalence. We give two applications of this result, one for transporting monoidal structures and one for equipping a monoidal bicategory with invertible objects with a coherent choice of those inverses.
Publié le :
Classification : Primary 18D05, 18D10 06F05, 06F07, 08B30
Keywords: biequivalence, biadjoint biequivalence, tricategory, monoidal bicategory
@article{TAC_2012_26_a13,
     author = {Nick Gurski},
     title = {Biequivalences in tricategories},
     journal = {Theory and applications of categories},
     pages = {349--384},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/}
}
TY  - JOUR
AU  - Nick Gurski
TI  - Biequivalences in tricategories
JO  - Theory and applications of categories
PY  - 2012
SP  - 349
EP  - 384
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/
LA  - en
ID  - TAC_2012_26_a13
ER  - 
%0 Journal Article
%A Nick Gurski
%T Biequivalences in tricategories
%J Theory and applications of categories
%D 2012
%P 349-384
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/
%G en
%F TAC_2012_26_a13
Nick Gurski. Biequivalences in tricategories. Theory and applications of categories, Tome 26 (2012), pp. 349-384. http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/