Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We show that every internal biequivalence in a tricategory $T$ is part of a biadjoint biequivalence. We give two applications of this result, one for transporting monoidal structures and one for equipping a monoidal bicategory with invertible objects with a coherent choice of those inverses.
@article{TAC_2012_26_a13, author = {Nick Gurski}, title = {Biequivalences in tricategories}, journal = {Theory and applications of categories}, pages = {349--384}, publisher = {mathdoc}, volume = {26}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/} }
Nick Gurski. Biequivalences in tricategories. Theory and applications of categories, Tome 26 (2012), pp. 349-384. http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/