Biequivalences in tricategories
Theory and applications of categories, Tome 26 (2012), pp. 349-384
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that every internal biequivalence in a tricategory $T$ is part of a biadjoint biequivalence. We give two applications of this result, one for transporting monoidal structures and one for equipping a monoidal bicategory with invertible objects with a coherent choice of those inverses.
Publié le :
Classification :
Primary 18D05, 18D10 06F05, 06F07, 08B30
Keywords: biequivalence, biadjoint biequivalence, tricategory, monoidal bicategory
Keywords: biequivalence, biadjoint biequivalence, tricategory, monoidal bicategory
@article{TAC_2012_26_a13,
author = {Nick Gurski},
title = {Biequivalences in tricategories},
journal = {Theory and applications of categories},
pages = {349--384},
year = {2012},
volume = {26},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/}
}
Nick Gurski. Biequivalences in tricategories. Theory and applications of categories, Tome 26 (2012), pp. 349-384. http://geodesic.mathdoc.fr/item/TAC_2012_26_a13/