On the iteration of weak wreath products
Theory and applications of categories, Tome 26 (2012), pp. 30-59.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Based on a study of the 2-category of weak distributive laws, we describe a method of iterating Street's weak wreath product construction. That is, for any 2-category $cal K$ and for any non-negative integer $n$, we introduce 2-categories $\Wdl^{(n)}(\cal K)$, of $(n+1)$-tuples of monads in $\cal K$ pairwise related by weak distributive laws obeying the Yang-Baxter equation. The first instance $\Wdl^{(0)}(\cal K)$ coincides with $\Mnd(\cal K)$, the usual 2-category of monads in $\cal K$, and for other values of $n$, $\Wdl^{(n)}(\cal K)$ contains $\Mnd^{n+1}(\cK)$ as a full 2-subcategory. For the local idempotent closure $\overline \cal K$ of $\cal K$, extending the multiplication of the 2-monad $\Mnd$, we equip these 2-categories with $n$ possible `weak wreath product' 2-functors $\Wdl^{(n)}(\ocK)\to \Wdl^{(n-1)}(\overline \cal K)$, such that all of their possible $n$-fold composites $\Wdl^{(n)}(\overline \cal K)\to \Wdl^{(0)}(\overline \cal K)$ are equal; that is, such that the weak wreath product is `associative'. Whenever idempotent 2-cells in $\cal K$ split, this leads to pseudofunctors $\Wdl^{(n)}(\cal K)\to \Wdl^{(n-1)}(\cal K)$ obeying the associativity property up-to isomorphism. We present a practically important occurrence of an iterated weak wreath product: the algebra of observable quantities in an Ising type quantum spin chain where the spins take their values in a dual pair of finite weak Hopf algebras. We also construct a fully faithful embedding of $\Wdl^{(n)}(\overline \cal K)$ into the 2-category of commutative $n+1$ dimensional cubes in $\Mnd(\overline \cal K)$ (hence into the 2-category of commutative $n+1$ dimensional cubes in $\cal K$ whenever $\cal K$ has Eilenberg-Moore objects and its idempotent 2-cells split). Finally we give a sufficient and necessary condition on a monad in $\overline \cal K$ to be isomorphic to an $n$-ary weak wreath product.
Publié le :
Classification : 18C15, 18D05, 16W30
Keywords: monad, weak distributive law, n-ary weak wreath product, Yang-Baxter equation, quantum spin chain
@article{TAC_2012_26_a1,
     author = {Gabriella B\"ohm},
     title = {On the iteration of weak wreath products},
     journal = {Theory and applications of categories},
     pages = {30--59},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a1/}
}
TY  - JOUR
AU  - Gabriella Böhm
TI  - On the iteration of weak wreath products
JO  - Theory and applications of categories
PY  - 2012
SP  - 30
EP  - 59
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a1/
LA  - en
ID  - TAC_2012_26_a1
ER  - 
%0 Journal Article
%A Gabriella Böhm
%T On the iteration of weak wreath products
%J Theory and applications of categories
%D 2012
%P 30-59
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a1/
%G en
%F TAC_2012_26_a1
Gabriella Böhm. On the iteration of weak wreath products. Theory and applications of categories, Tome 26 (2012), pp. 30-59. http://geodesic.mathdoc.fr/item/TAC_2012_26_a1/