Monoidal functor categories and graphic Fourier transforms
Theory and applications of categories, Tome 25 (2011), pp. 118-141.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This article represents a preliminary attempt to link Kan extensions, and some of their further developments, to Fourier theory and quantum algebra through *-autonomous monoidal categories and related structures. There is a close resemblance to convolution products and the Wiener algebra (of transforms) in functional analysis. The analysis term ``kernel'' (of a distribution) has also been adapted below in connection with certain special types of ``distributors'' (in the terminology of J. Benabou) or ``modules'' (in the terminology of R. Street) in category theory. In using the term ``graphic'', in a very broad sense, we are clearly distinguishing the categorical methods employed in this article from standard Fourier and wavelet mathematics. The term ``graphic'' also applies to promultiplicative graphs, and related concepts, which can feature prominently in the theory.
Publié le :
Classification : 18D10, 18A25
Keywords: monoidal category, promonoidal category, convolution, Fourier transform
@article{TAC_2011_25_a4,
     author = {Brian J. Day},
     title = {Monoidal functor categories and graphic {Fourier} transforms},
     journal = {Theory and applications of categories},
     pages = {118--141},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a4/}
}
TY  - JOUR
AU  - Brian J. Day
TI  - Monoidal functor categories and graphic Fourier transforms
JO  - Theory and applications of categories
PY  - 2011
SP  - 118
EP  - 141
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a4/
LA  - en
ID  - TAC_2011_25_a4
ER  - 
%0 Journal Article
%A Brian J. Day
%T Monoidal functor categories and graphic Fourier transforms
%J Theory and applications of categories
%D 2011
%P 118-141
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a4/
%G en
%F TAC_2011_25_a4
Brian J. Day. Monoidal functor categories and graphic Fourier transforms. Theory and applications of categories, Tome 25 (2011), pp. 118-141. http://geodesic.mathdoc.fr/item/TAC_2011_25_a4/