The Faà di Bruno construction
Theory and applications of categories, Tome 25 (2011), pp. 393-425.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In the context of Cartesian differential categories, the structure of the first-order chain rule gives rise to a fibration, the ``bundle category''. In the present paper we generalise this to the higher-order chain rule (originally developed in the traditional setting by Faà di Bruno in the nineteenth century); given any Cartesian differential category X, there is a ``higher-order chain rule fibration'' Faa(X) --> X over it. In fact, Faa is a comonad (over the category of Cartesian left (semi-)additive categories). Our main theorem is that the coalgebras for this comonad are precisely the Cartesian differential categories. In a sense, this result affirms the ``correctness'' of the notion of Cartesian differential categories.
Publié le :
Classification : 18D10, 18C20, 12H05, 32W99
Keywords: Higher-order chain rule, Cartesian differential categories, bundle fibration, coalgebras
@article{TAC_2011_25_a14,
     author = {J.R.B. Cockett and R.A.G. Seely},
     title = {The {Fa\`a} di {Bruno} construction},
     journal = {Theory and applications of categories},
     pages = {393--425},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a14/}
}
TY  - JOUR
AU  - J.R.B. Cockett
AU  - R.A.G. Seely
TI  - The Faà di Bruno construction
JO  - Theory and applications of categories
PY  - 2011
SP  - 393
EP  - 425
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a14/
LA  - en
ID  - TAC_2011_25_a14
ER  - 
%0 Journal Article
%A J.R.B. Cockett
%A R.A.G. Seely
%T The Faà di Bruno construction
%J Theory and applications of categories
%D 2011
%P 393-425
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a14/
%G en
%F TAC_2011_25_a14
J.R.B. Cockett; R.A.G. Seely. The Faà di Bruno construction. Theory and applications of categories, Tome 25 (2011), pp. 393-425. http://geodesic.mathdoc.fr/item/TAC_2011_25_a14/