Symmetry and Cauchy completion of quantaloid-enriched categories
Theory and applications of categories, Tome 25 (2011), pp. 276-294.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We formulate an elementary condition on an involutive quantaloid $Q$ under which there is a distributive law from the Cauchy completion monad over the symmetrisation comonad on the category of $Q$-enriched categories. For such quantaloids, which we call Cauchy-bilateral quantaloids, it follows that the Cauchy completion of any symmetric $Q$-enriched category is again symmetric. Examples include Lawvere's quantale of non-negative real numbers and Walters' small quantaloids of closed cribles.
Publié le :
Classification : 06F07, 18C15, 18D05, 18D20
Keywords: Quantaloid, enriched category, symmetry, Cauchy completion
@article{TAC_2011_25_a10,
     author = {Hans Heymans and Isar Stubbe},
     title = {Symmetry and {Cauchy} completion of quantaloid-enriched categories},
     journal = {Theory and applications of categories},
     pages = {276--294},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a10/}
}
TY  - JOUR
AU  - Hans Heymans
AU  - Isar Stubbe
TI  - Symmetry and Cauchy completion of quantaloid-enriched categories
JO  - Theory and applications of categories
PY  - 2011
SP  - 276
EP  - 294
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a10/
LA  - en
ID  - TAC_2011_25_a10
ER  - 
%0 Journal Article
%A Hans Heymans
%A Isar Stubbe
%T Symmetry and Cauchy completion of quantaloid-enriched categories
%J Theory and applications of categories
%D 2011
%P 276-294
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a10/
%G en
%F TAC_2011_25_a10
Hans Heymans; Isar Stubbe. Symmetry and Cauchy completion of quantaloid-enriched categories. Theory and applications of categories, Tome 25 (2011), pp. 276-294. http://geodesic.mathdoc.fr/item/TAC_2011_25_a10/