The Frobenius relations meet linear distributivity
Theory and applications of categories, Tome 24 (2010), pp. 25-38.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The notion of Frobenius algebra originally arose in ring theory, but it is a fairly easy observation that this notion can be extended to arbitrary monoidal categories. But, is this really the correct level of generalisation?For example, when studying Frobenius algebras in the *-autonomous category $\Sup$, the standard concept using only the usual tensor product is less interesting than a similar one in which both the usual tensor product and its de Morgan dual (par) are used.Thus we maintain that the notion of linear-distributive category (which has both a tensor and a par, but is nevertheless more general than the notion of monoidal category) provides the correct framework in which to interpret the concept of Frobenius algebra.
Classification : 03F52, 18D10, 18D15
Keywords: Frobenius algebras, linear distributive categories
@article{TAC_2010_24_a1,
     author = {J.M. Egger},
     title = {The {Frobenius} relations meet linear distributivity},
     journal = {Theory and applications of categories},
     pages = {25--38},
     publisher = {mathdoc},
     volume = {24},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_24_a1/}
}
TY  - JOUR
AU  - J.M. Egger
TI  - The Frobenius relations meet linear distributivity
JO  - Theory and applications of categories
PY  - 2010
SP  - 25
EP  - 38
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_24_a1/
LA  - en
ID  - TAC_2010_24_a1
ER  - 
%0 Journal Article
%A J.M. Egger
%T The Frobenius relations meet linear distributivity
%J Theory and applications of categories
%D 2010
%P 25-38
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_24_a1/
%G en
%F TAC_2010_24_a1
J.M. Egger. The Frobenius relations meet linear distributivity. Theory and applications of categories, Tome 24 (2010), pp. 25-38. http://geodesic.mathdoc.fr/item/TAC_2010_24_a1/