What are sifted colimits?
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 251-260.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Sifted colimits, important for algebraic theories, are "almost" just the combination of filtered colimits and reflexive coequalizers. For example, given a finitely cocomplete category $\cal A$, then a functor with domain $\cal A$ preserves sifted colimits iff it preserves filtered colimits and reflexive coequalizers. But for general categories $\cal A$ that statement is not true: we provide a counter-example.
Classification : 18A30, 18A35
Keywords: sifted colimit, reflexive coequalizer, filtered colimit
@article{TAC_2010_23_a12,
     author = {J. Adamek and J. Rosicky and E. M. Vitale},
     title = {What are sifted colimits?},
     journal = {Theory and applications of categories},
     pages = {251--260},
     publisher = {mathdoc},
     volume = {23},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a12/}
}
TY  - JOUR
AU  - J. Adamek
AU  - J. Rosicky
AU  - E. M. Vitale
TI  - What are sifted colimits?
JO  - Theory and applications of categories
PY  - 2010
SP  - 251
EP  - 260
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_23_a12/
LA  - en
ID  - TAC_2010_23_a12
ER  - 
%0 Journal Article
%A J. Adamek
%A J. Rosicky
%A E. M. Vitale
%T What are sifted colimits?
%J Theory and applications of categories
%D 2010
%P 251-260
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_23_a12/
%G en
%F TAC_2010_23_a12
J. Adamek; J. Rosicky; E. M. Vitale. What are sifted colimits?. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 251-260. http://geodesic.mathdoc.fr/item/TAC_2010_23_a12/