What are sifted colimits?
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 251-260
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Sifted colimits, important for algebraic theories, are "almost" just the combination of filtered colimits and reflexive coequalizers. For example, given a finitely cocomplete category $\cal A$, then a functor with domain $\cal A$ preserves sifted colimits iff it preserves filtered colimits and reflexive coequalizers. But for general categories $\cal A$ that statement is not true: we provide a counter-example.
Classification :
18A30, 18A35
Keywords: sifted colimit, reflexive coequalizer, filtered colimit
Keywords: sifted colimit, reflexive coequalizer, filtered colimit
@article{TAC_2010_23_a12,
author = {J. Adamek and J. Rosicky and E. M. Vitale},
title = {What are sifted colimits?},
journal = {Theory and applications of categories},
pages = {251--260},
year = {2010},
volume = {23},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a12/}
}
J. Adamek; J. Rosicky; E. M. Vitale. What are sifted colimits?. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 251-260. http://geodesic.mathdoc.fr/item/TAC_2010_23_a12/