Homology of n-fold groupoids
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 22-41.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Any semi-abelian category A appears, via the discrete functor, as a full replete reflective subcategory of the semi-abelian category of internal groupoids in A. This allows one to study the homology of $n$-fold internal groupoids with coefficients in a semi-abelian category A, and to compute explicit higher Hopf formulae. The crucial concept making such computations possible is the notion of protoadditive functor, which can be seen as a natural generalisation of the notion of additive functor.
Classification : 8G, 20J, 55N35, 18E10, 20L
Keywords: Protoadditive functor, categorical Galois theory, internal groupoid, semi-abelian category, homology, Hopf formula
@article{TAC_2010_23_a1,
     author = {Tomas Everaert and Marino Gran},
     title = {Homology of n-fold groupoids},
     journal = {Theory and applications of categories},
     pages = {22--41},
     publisher = {mathdoc},
     volume = {23},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a1/}
}
TY  - JOUR
AU  - Tomas Everaert
AU  - Marino Gran
TI  - Homology of n-fold groupoids
JO  - Theory and applications of categories
PY  - 2010
SP  - 22
EP  - 41
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2010_23_a1/
LA  - en
ID  - TAC_2010_23_a1
ER  - 
%0 Journal Article
%A Tomas Everaert
%A Marino Gran
%T Homology of n-fold groupoids
%J Theory and applications of categories
%D 2010
%P 22-41
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2010_23_a1/
%G en
%F TAC_2010_23_a1
Tomas Everaert; Marino Gran. Homology of n-fold groupoids. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 22-41. http://geodesic.mathdoc.fr/item/TAC_2010_23_a1/