Homology of n-fold groupoids
Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 22-41
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Any semi-abelian category A appears, via the discrete functor, as a full replete reflective subcategory of the semi-abelian category of internal groupoids in A. This allows one to study the homology of $n$-fold internal groupoids with coefficients in a semi-abelian category A, and to compute explicit higher Hopf formulae. The crucial concept making such computations possible is the notion of protoadditive functor, which can be seen as a natural generalisation of the notion of additive functor.
Classification :
8G, 20J, 55N35, 18E10, 20L
Keywords: Protoadditive functor, categorical Galois theory, internal groupoid, semi-abelian category, homology, Hopf formula
Keywords: Protoadditive functor, categorical Galois theory, internal groupoid, semi-abelian category, homology, Hopf formula
@article{TAC_2010_23_a1,
author = {Tomas Everaert and Marino Gran},
title = {Homology of n-fold groupoids},
journal = {Theory and applications of categories},
pages = {22--41},
year = {2010},
volume = {23},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2010_23_a1/}
}
Tomas Everaert; Marino Gran. Homology of n-fold groupoids. Theory and applications of categories, The Bourn Festschrift, Tome 23 (2010), pp. 22-41. http://geodesic.mathdoc.fr/item/TAC_2010_23_a1/