On the categorical semantics of elementary linear logic
Theory and applications of categories, Tome 22 (2009), pp. 269-301.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce the notion of elementary Seely category as a notion of categorical model of Elementary Linear Logic (ELL) inspired from Seely's definition of models of Linear Logic (LL). In order to deal with additive connectives in ELL, we use the approach of Danos and Joinet. From the categorical point of view, this requires us to go outside the usual interpretation of connectives by functors. The $!$ connective is decomposed into a pre-connective $\sharp$ which is interpreted by a whole family of functors (generated by $\id$, $\tens$ and $\with$). As an application, we prove the stratified coherent model and the obsessional coherent model to be elementary Seely categories and thus models of ELL.
Classification : 18C50
Keywords: monoidal categories, elementary linear logic, categorical logic, denotational semantics, coherent spaces
@article{TAC_2009_22_a9,
     author = {Olivier Laurent},
     title = {On the categorical semantics of elementary linear logic},
     journal = {Theory and applications of categories},
     pages = {269--301},
     publisher = {mathdoc},
     volume = {22},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2009_22_a9/}
}
TY  - JOUR
AU  - Olivier Laurent
TI  - On the categorical semantics of elementary linear logic
JO  - Theory and applications of categories
PY  - 2009
SP  - 269
EP  - 301
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2009_22_a9/
LA  - en
ID  - TAC_2009_22_a9
ER  - 
%0 Journal Article
%A Olivier Laurent
%T On the categorical semantics of elementary linear logic
%J Theory and applications of categories
%D 2009
%P 269-301
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2009_22_a9/
%G en
%F TAC_2009_22_a9
Olivier Laurent. On the categorical semantics of elementary linear logic. Theory and applications of categories, Tome 22 (2009), pp. 269-301. http://geodesic.mathdoc.fr/item/TAC_2009_22_a9/