Tensor-triangulated categories and dualities
Theory and applications of categories, Tome 22 (2009), pp. 136-198.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In a triangulated closed symmetric monoidal category, there are natural dualities induced by the internal Hom. Given a monoidal exact functor $f^*$ between two such categories and adjoint couples $(f^*,f_*)$, $(f_*,f^!)$, we establish the commutative diagrams necessary for $f^*$ and $f_*$ to respect certain dualities, for a projection formula to hold between them (as duality preserving exact functors) and for classical base change and composition formulas to hold when such duality preserving functors are composed. This framework allows us to define push-forwards for Witt groups, for example.
Classification : 18D10
Keywords: closed monoidal category, commutative diagram, duality, Witt group
@article{TAC_2009_22_a5,
     author = {Baptiste Calm\`es and Jens Hornbostel},
     title = {Tensor-triangulated categories and dualities},
     journal = {Theory and applications of categories},
     pages = {136--198},
     publisher = {mathdoc},
     volume = {22},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2009_22_a5/}
}
TY  - JOUR
AU  - Baptiste Calmès
AU  - Jens Hornbostel
TI  - Tensor-triangulated categories and dualities
JO  - Theory and applications of categories
PY  - 2009
SP  - 136
EP  - 198
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2009_22_a5/
LA  - en
ID  - TAC_2009_22_a5
ER  - 
%0 Journal Article
%A Baptiste Calmès
%A Jens Hornbostel
%T Tensor-triangulated categories and dualities
%J Theory and applications of categories
%D 2009
%P 136-198
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2009_22_a5/
%G en
%F TAC_2009_22_a5
Baptiste Calmès; Jens Hornbostel. Tensor-triangulated categories and dualities. Theory and applications of categories, Tome 22 (2009), pp. 136-198. http://geodesic.mathdoc.fr/item/TAC_2009_22_a5/