Higher-dimensional categories with finite derivation type
Theory and applications of categories, Tome 22 (2009), pp. 420-478.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalising the one introduced by Squier for word rewriting systems. We characterise this property by using the notion of critical branching. In particular, we define sufficient conditions for an n-category to have finite derivation type. Through examples, we present several techniques based on derivations of 2-categories to study convergent presentations by 3-polygraphs.
Classification : 18C10, 18D05, 18D10, 57M20, 68Q42
Keywords: n-category, rewriting, polygraph, finite derivation type, low-dimensional topology
@article{TAC_2009_22_a17,
     author = {Yves Guiraud and Philippe Malbos},
     title = {Higher-dimensional categories with finite derivation type},
     journal = {Theory and applications of categories},
     pages = {420--478},
     publisher = {mathdoc},
     volume = {22},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2009_22_a17/}
}
TY  - JOUR
AU  - Yves Guiraud
AU  - Philippe Malbos
TI  - Higher-dimensional categories with finite derivation type
JO  - Theory and applications of categories
PY  - 2009
SP  - 420
EP  - 478
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2009_22_a17/
LA  - en
ID  - TAC_2009_22_a17
ER  - 
%0 Journal Article
%A Yves Guiraud
%A Philippe Malbos
%T Higher-dimensional categories with finite derivation type
%J Theory and applications of categories
%D 2009
%P 420-478
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2009_22_a17/
%G en
%F TAC_2009_22_a17
Yves Guiraud; Philippe Malbos. Higher-dimensional categories with finite derivation type. Theory and applications of categories, Tome 22 (2009), pp. 420-478. http://geodesic.mathdoc.fr/item/TAC_2009_22_a17/