Limit preserving full embeddings
Theory and applications of categories, The Tholen Festschrift, Tome 21 (2008), pp. 21-36.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove that every small strongly connected category k has a full embedding preserving all limits existing in k into a category of unary universal algebras. The number of unary operations can be restricted to |mor k| in case when k has a terminal object and only preservation of limits over finitely many objects is desired. And all limits existing in such a category k are preserved by a full embedding of k into the category of all algebraic systems with |mor k| unary operation and one unary relation.
Classification : Primary: 08B25, Secondary: 18B15
Keywords: universal algebra, unary algebra, limit, full embedding, limit preserving functor
@article{TAC_2008_21_a1,
     author = {V. Trnkova and J. Sichler},
     title = {Limit preserving full embeddings},
     journal = {Theory and applications of categories},
     pages = {21--36},
     publisher = {mathdoc},
     volume = {21},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2008_21_a1/}
}
TY  - JOUR
AU  - V. Trnkova
AU  - J. Sichler
TI  - Limit preserving full embeddings
JO  - Theory and applications of categories
PY  - 2008
SP  - 21
EP  - 36
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2008_21_a1/
LA  - en
ID  - TAC_2008_21_a1
ER  - 
%0 Journal Article
%A V. Trnkova
%A J. Sichler
%T Limit preserving full embeddings
%J Theory and applications of categories
%D 2008
%P 21-36
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2008_21_a1/
%G en
%F TAC_2008_21_a1
V. Trnkova; J. Sichler. Limit preserving full embeddings. Theory and applications of categories, The Tholen Festschrift, Tome 21 (2008), pp. 21-36. http://geodesic.mathdoc.fr/item/TAC_2008_21_a1/