Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Assuming that $B$ is a full $A_\infty$-subcategory of a unital $A_\infty$-category $\cc$ we construct the quotient unital $A_\infty$-category $\cd=$`$\cc/\cb$'. It represents the $A_\infty^u$-2-functor $A \mapsto A_\infty^u(C,A)_{mod B}$, which associates with a given unital $A_\infty$-category $A$ the $A_\infty$-category of unital $A_\infty$-functors $C \to A$, whose restriction to $B$ is contractible. Namely, there is a unital $A_\infty$-functor $e: C \to D$ such that the composition $B \hookrightarrow C \to^e D$ is contractible, and for an arbitrary unital $A_\infty$-category $A$ the restriction $A_\infty$-functor $(e\boxtimes 1)M : A_\infty^u(D,A)\to A_\infty^u(C,A)_{mod B}$ is an equivalence.
Let $C_k$ be the differential graded category of differential graded $k$-modules. We prove that the Yoneda $A_\infty$-functor $Y: A \to A_\infty^u(A^{op}, C_k)$ is a full embedding for an arbitrary unital $A_\infty$-category $A$. In particular, such $A$ is $A_\infty$-equivalent to a differential graded category with the same set of objects.
@article{TAC_2008_20_a12, author = {Volodymyr Lyubashenko and Oleksandr Manzyuk}, title = {Quotients of unital $A_\infty$-categories}, journal = {Theory and applications of categories}, pages = {405--495}, publisher = {mathdoc}, volume = {20}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2008_20_a12/} }
Volodymyr Lyubashenko; Oleksandr Manzyuk. Quotients of unital $A_\infty$-categories. Theory and applications of categories, Tome 20 (2008), pp. 405-495. http://geodesic.mathdoc.fr/item/TAC_2008_20_a12/