Iterative algebras: How iterative are they?
Theory and applications of categories, CT2006, Tome 19 (2007), pp. 61-92.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Iterative algebras, defined by the property that every guarded system of recursive equations has a unique solution, are proved to have a much stronger property: every system of recursive equations has a unique strict solution. Those systems that have a unique solution in every iterative algebra are characterized.
Classification : 68Q65, 18A15
Keywords: iterative algebra, guarded equation, strict solution, extensive category
@article{TAC_2007_19_a4,
     author = {J. Adamek and R. Borger and S. Milius and J. Velebil},
     title = {Iterative algebras: {How} iterative are they?},
     journal = {Theory and applications of categories},
     pages = {61--92},
     publisher = {mathdoc},
     volume = {19},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_19_a4/}
}
TY  - JOUR
AU  - J. Adamek
AU  - R. Borger
AU  - S. Milius
AU  - J. Velebil
TI  - Iterative algebras: How iterative are they?
JO  - Theory and applications of categories
PY  - 2007
SP  - 61
EP  - 92
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_19_a4/
LA  - en
ID  - TAC_2007_19_a4
ER  - 
%0 Journal Article
%A J. Adamek
%A R. Borger
%A S. Milius
%A J. Velebil
%T Iterative algebras: How iterative are they?
%J Theory and applications of categories
%D 2007
%P 61-92
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2007_19_a4/
%G en
%F TAC_2007_19_a4
J. Adamek; R. Borger; S. Milius; J. Velebil. Iterative algebras: How iterative are they?. Theory and applications of categories, CT2006, Tome 19 (2007), pp. 61-92. http://geodesic.mathdoc.fr/item/TAC_2007_19_a4/