Components, complements and the reflection formula
Theory and applications of categories, CT2006, Tome 19 (2007), pp. 19-40.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We illustrate the formula $ (\downarrow p)x = \Gamma_!(x/p) $, which gives the reflection $\downarrow p$ of a category $p : P \to X$ over $X$ in discrete fibrations. One of its proofs is based on a ``complement operator" which takes a discrete fibration $A$ to the functor $\neg A$, right adjoint to $\Gamma_!(A\times-):Cat/X \to Set$ and valued in discrete opfibrations.Some consequences and applications are presented.
Classification : 18A99
Keywords: categories over a base, discrete fibrations, reflection, components, tensor, complement, strong dinaturality, limits and colimits, atoms, idempotents, graphs and evolutive sets
@article{TAC_2007_19_a1,
     author = {Claudio Pisani},
     title = {Components, complements and the reflection formula},
     journal = {Theory and applications of categories},
     pages = {19--40},
     publisher = {mathdoc},
     volume = {19},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_19_a1/}
}
TY  - JOUR
AU  - Claudio Pisani
TI  - Components, complements and the reflection formula
JO  - Theory and applications of categories
PY  - 2007
SP  - 19
EP  - 40
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_19_a1/
LA  - en
ID  - TAC_2007_19_a1
ER  - 
%0 Journal Article
%A Claudio Pisani
%T Components, complements and the reflection formula
%J Theory and applications of categories
%D 2007
%P 19-40
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2007_19_a1/
%G en
%F TAC_2007_19_a1
Claudio Pisani. Components, complements and the reflection formula. Theory and applications of categories, CT2006, Tome 19 (2007), pp. 19-40. http://geodesic.mathdoc.fr/item/TAC_2007_19_a1/