More morphisms between bundle gerbes
Theory and applications of categories, Tome 18 (2007), pp. 240-273.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Usually bundle gerbes are considered as objects of a 2-groupoid, whose 1-morphisms, called stable isomorphisms, are all invertible. I introduce new 1-morphisms which include stable isomorphisms, trivializations and bundle gerbe modules. They fit into the structure of a 2-category of bundle gerbes, and lead to natural definitions of surface holonomy for closed surfaces, surfaces with boundary, and unoriented closed surfaces.
Classification : 55R65, 53C29, 18B40
Keywords: 2-category, bundle gerbe, holonomy
@article{TAC_2007_18_a8,
     author = {Konrad Waldorf},
     title = {More morphisms between bundle gerbes},
     journal = {Theory and applications of categories},
     pages = {240--273},
     publisher = {mathdoc},
     volume = {18},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_18_a8/}
}
TY  - JOUR
AU  - Konrad Waldorf
TI  - More morphisms between bundle gerbes
JO  - Theory and applications of categories
PY  - 2007
SP  - 240
EP  - 273
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_18_a8/
LA  - en
ID  - TAC_2007_18_a8
ER  - 
%0 Journal Article
%A Konrad Waldorf
%T More morphisms between bundle gerbes
%J Theory and applications of categories
%D 2007
%P 240-273
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2007_18_a8/
%G en
%F TAC_2007_18_a8
Konrad Waldorf. More morphisms between bundle gerbes. Theory and applications of categories, Tome 18 (2007), pp. 240-273. http://geodesic.mathdoc.fr/item/TAC_2007_18_a8/