Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We give an interpretation of Yetter's Invariant of manifolds M in terms of the homotopy type of the function space TOP(M,B(\cal G))$, where \cal G is a crossed module and B(\cal G) is its classifying space. From this formulation, there follows that Yetter's invariant depends only on the homotopy type of M, and the weak homotopy type of the crossed module \cal G. We use this interpretation to define a twisting of Yetter's Invariant by cohomology classes of crossed modules, defined as cohomology classes of their classifying spaces, in the form of a state sum invariant. In particular, we obtain an extension of the Dijkgraaf-Witten Invariant of manifolds to categorical groups. The straightforward extension to crossed complexes is also considered.
@article{TAC_2007_18_a3, author = {Joao Faria Martins and Timothy Porter}, title = {On {Yetter's} {Invariant} and an {Extension} of the {Dijkgraaf-Witten} {Invariant} to {Categorical} {Groups}}, journal = {Theory and applications of categories}, pages = {118--150}, publisher = {mathdoc}, volume = {18}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/} }
TY - JOUR AU - Joao Faria Martins AU - Timothy Porter TI - On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups JO - Theory and applications of categories PY - 2007 SP - 118 EP - 150 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/ LA - en ID - TAC_2007_18_a3 ER -
%0 Journal Article %A Joao Faria Martins %A Timothy Porter %T On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups %J Theory and applications of categories %D 2007 %P 118-150 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/ %G en %F TAC_2007_18_a3
Joao Faria Martins; Timothy Porter. On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups. Theory and applications of categories, Tome 18 (2007), pp. 118-150. http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/