On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups
Theory and applications of categories, Tome 18 (2007), pp. 118-150.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give an interpretation of Yetter's Invariant of manifolds M in terms of the homotopy type of the function space TOP(M,B(\cal G))$, where \cal G is a crossed module and B(\cal G) is its classifying space. From this formulation, there follows that Yetter's invariant depends only on the homotopy type of M, and the weak homotopy type of the crossed module \cal G. We use this interpretation to define a twisting of Yetter's Invariant by cohomology classes of crossed modules, defined as cohomology classes of their classifying spaces, in the form of a state sum invariant. In particular, we obtain an extension of the Dijkgraaf-Witten Invariant of manifolds to categorical groups. The straightforward extension to crossed complexes is also considered.
Classification : 18F99, 55P99, 57M27, 57R56, 81T45
Keywords: Categorical Groups, Crossed Modules, Cohomology of Crossed Modules, State Sum Invariants of Manifolds, Dijkgraaf-Witten Invariant, Yetter's Invariant
@article{TAC_2007_18_a3,
     author = {Joao Faria Martins and Timothy Porter},
     title = {On {Yetter's} {Invariant} and an {Extension} of the {Dijkgraaf-Witten} {Invariant} to {Categorical} {Groups}},
     journal = {Theory and applications of categories},
     pages = {118--150},
     publisher = {mathdoc},
     volume = {18},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/}
}
TY  - JOUR
AU  - Joao Faria Martins
AU  - Timothy Porter
TI  - On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups
JO  - Theory and applications of categories
PY  - 2007
SP  - 118
EP  - 150
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/
LA  - en
ID  - TAC_2007_18_a3
ER  - 
%0 Journal Article
%A Joao Faria Martins
%A Timothy Porter
%T On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups
%J Theory and applications of categories
%D 2007
%P 118-150
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/
%G en
%F TAC_2007_18_a3
Joao Faria Martins; Timothy Porter. On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups. Theory and applications of categories, Tome 18 (2007), pp. 118-150. http://geodesic.mathdoc.fr/item/TAC_2007_18_a3/