Compactifications, C(X) and ring epimorphisms
Theory and applications of categories, Tome 16 (2006), pp. 558-584.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Given a topological space $X$, $K(X)$ denotes the upper semi-lattice of its (Hausdorff) compactifications. Recent studies have asked when, for $\alpha X \in K(X)$, the restriction homomorphism $\rho : C(\alpha X) \to C(X)$ is an epimorphism in the category of commutative rings. This article continues this study by examining the sub-semilattice, $K_{epi}(X)$, of those compactifications where $\rho$ is an epimorphism along with two of its subsets, and its complement $K_{nepi}(X)$. The role of $K_z(X)\subseteq K(X)$ of those $\alpha X$ where $X$ is $z$-embedded in $\alpha X$, is also examined. The cases where $X$ is a $P$-space and, more particularly, where $X$ is discrete, receive special attention.
Classification : 18A20, 54C45, 54B40
Keywords: epimorphism, ring of continuous functions, category of rings, compactifications
@article{TAC_2006_16_a20,
     author = {W.D. Burgess and R. Raphael},
     title = {Compactifications, {C(X)} and ring epimorphisms},
     journal = {Theory and applications of categories},
     pages = {558--584},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a20/}
}
TY  - JOUR
AU  - W.D. Burgess
AU  - R. Raphael
TI  - Compactifications, C(X) and ring epimorphisms
JO  - Theory and applications of categories
PY  - 2006
SP  - 558
EP  - 584
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_16_a20/
LA  - en
ID  - TAC_2006_16_a20
ER  - 
%0 Journal Article
%A W.D. Burgess
%A R. Raphael
%T Compactifications, C(X) and ring epimorphisms
%J Theory and applications of categories
%D 2006
%P 558-584
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_16_a20/
%G en
%F TAC_2006_16_a20
W.D. Burgess; R. Raphael. Compactifications, C(X) and ring epimorphisms. Theory and applications of categories, Tome 16 (2006), pp. 558-584. http://geodesic.mathdoc.fr/item/TAC_2006_16_a20/