Categorical structures enriched in a quantaloid: tensored and cotensored categories
Theory and applications of categories, Tome 16 (2006), pp. 283-306.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A quantaloid is a sup-lattice-enriched category; our subject is that of categories, functors and distributors enriched in a base quantaloid $\mathcal{Q}$. We show how cocomplete $\mathcal{Q}$-categories are precisely those which are tensored and conically cocomplete, or alternatively, those which are tensored, cotensored and `order-cocomplete'. In fact, tensors and cotensors in a $\mathcal{Q}$-category determine, and are determined by, certain adjunctions in the category of $\mathcal{Q}$-categories; some of these adjunctions can be reduced to adjuctions in the category of ordered sets. Bearing this in mind, we explain how tensored $\mathcal{Q}$-categories are equivalent to order-valued closed pseudofunctors on $\mathcal{Q}^{op}$; this result is then finetuned to obtain in particular that cocomplete $\mathcal{Q}$-categories are equivalent to sup-lattice-valued homomorphisms on $\mathcal{Q}^{op}$ (a.k.a.\ $\mathcal{Q}$-modules).
Classification : 06F07, 18D05, 18D20
Keywords: quantaloid, enriched category, weighted (co)limit, module
@article{TAC_2006_16_a13,
     author = {Isar Stubbe},
     title = {Categorical structures enriched in a quantaloid: tensored and cotensored categories},
     journal = {Theory and applications of categories},
     pages = {283--306},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a13/}
}
TY  - JOUR
AU  - Isar Stubbe
TI  - Categorical structures enriched in a quantaloid: tensored and cotensored categories
JO  - Theory and applications of categories
PY  - 2006
SP  - 283
EP  - 306
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2006_16_a13/
LA  - en
ID  - TAC_2006_16_a13
ER  - 
%0 Journal Article
%A Isar Stubbe
%T Categorical structures enriched in a quantaloid: tensored and cotensored categories
%J Theory and applications of categories
%D 2006
%P 283-306
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2006_16_a13/
%G en
%F TAC_2006_16_a13
Isar Stubbe. Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory and applications of categories, Tome 16 (2006), pp. 283-306. http://geodesic.mathdoc.fr/item/TAC_2006_16_a13/