Exponentiability in lax slices of Top
Theory and applications of categories, Tome 16 (2006), pp. 218-235
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We consider exponentiable objects in lax slices of Top with respect to the specialization order (and its opposite) on a base space B. We begin by showing that the lax slice over B has binary products which are preserved by the forgetful functor to Top if and only if B is a meet (respective, join) semilattice in Top, and go on to characterize exponentiability over a complete Alexandrov space B.
Classification :
18B30, 18A40, 18A25, 54C35, 54F05, 06F30
Keywords: exponentiable space, function space, lax slice, specialization order
Keywords: exponentiable space, function space, lax slice, specialization order
@article{TAC_2006_16_a10,
author = {Susan Niefield},
title = {Exponentiability in lax slices of {Top}},
journal = {Theory and applications of categories},
pages = {218--235},
year = {2006},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2006_16_a10/}
}
Susan Niefield. Exponentiability in lax slices of Top. Theory and applications of categories, Tome 16 (2006), pp. 218-235. http://geodesic.mathdoc.fr/item/TAC_2006_16_a10/