Algebraic models of intuitionistic theories of sets and classes
Theory and applications of categories, CT2004, Tome 15 (2005), pp. 147-163.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper constructs models of intuitionistic set theory in suitable categories. First, a Basic Intuitionistic Set Theory (BIST) is stated, and the categorical semantics are given. Second, we give a notion of an ideal over a category, using which one can build a model of BIST in which a given topos occurs as the sets. And third, a sheaf model is given of a Basic Intuitionistic Class Theory conservatively extending BIST. The paper extends the results in Awodey, Butz, Simpson and Streicher (2003) by introducing a new and perhaps more natural notion of ideal, and in the class theory of part three.
Classification : 18B05, 18B25, 18C10, 03G30, 03E70, 03F60
Keywords: algebraic set theory, topos theory, sheaf theory
@article{TAC_2005_15_a4,
     author = {S. Awodey and H. Forssell},
     title = {Algebraic models of intuitionistic theories of sets and classes},
     journal = {Theory and applications of categories},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {15},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2005_15_a4/}
}
TY  - JOUR
AU  - S. Awodey
AU  - H. Forssell
TI  - Algebraic models of intuitionistic theories of sets and classes
JO  - Theory and applications of categories
PY  - 2005
SP  - 147
EP  - 163
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2005_15_a4/
LA  - en
ID  - TAC_2005_15_a4
ER  - 
%0 Journal Article
%A S. Awodey
%A H. Forssell
%T Algebraic models of intuitionistic theories of sets and classes
%J Theory and applications of categories
%D 2005
%P 147-163
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2005_15_a4/
%G en
%F TAC_2005_15_a4
S. Awodey; H. Forssell. Algebraic models of intuitionistic theories of sets and classes. Theory and applications of categories, CT2004, Tome 15 (2005), pp. 147-163. http://geodesic.mathdoc.fr/item/TAC_2005_15_a4/