Composing PROPs
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 147-163.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A PROP is a way of encoding structure borne by an object of a symmetric monoidal category. We describe a notion of distributive law for PROPs, based on Beck's distributive laws for monads. A distributive law between PROPs allows them to be composed, and an algebra for the composite PROP consists of a single object with an algebra structure for each of the original PROPs, subject to compatibility conditions encoded by the distributive law. An example is the PROP for bialgebras, which is a composite of the PROP for coalgebras and that for algebras.
Classification : 18D10, 18C10, 18D35
Keywords: symmetric monoidal category, PROP, monad, distributive law, algebra, bialgebra
@article{TAC_2004_13_a8,
     author = {Stephen Lack},
     title = {Composing {PROPs}},
     journal = {Theory and applications of categories},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {13},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a8/}
}
TY  - JOUR
AU  - Stephen Lack
TI  - Composing PROPs
JO  - Theory and applications of categories
PY  - 2004
SP  - 147
EP  - 163
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_13_a8/
LA  - en
ID  - TAC_2004_13_a8
ER  - 
%0 Journal Article
%A Stephen Lack
%T Composing PROPs
%J Theory and applications of categories
%D 2004
%P 147-163
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_13_a8/
%G en
%F TAC_2004_13_a8
Stephen Lack. Composing PROPs. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 147-163. http://geodesic.mathdoc.fr/item/TAC_2004_13_a8/