Derivations of categorical groups
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 86-105.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we introduce and study the categorical group of derivations, Der(G, A), from a categorical group G into a braided categorical group (A,c) equipped with a given coherent left action of G. Categorical groups provide a 2-dimensional vision of groups and so this object is a sort of 0-cohomology at a higher level for categorical groups. We show that the functor Der(-, A) is corepresentable by the semidirect product of A with G and that Der(G,-) preserves homotopy kernels. Well-known cohomology groups, and exact sequences relating these groups, in several different contexts are then obtained as examples of this general theory.
Classification : 18D10, 18G50, 20J05, 20L05
Keywords: derivation, categorical group, cohomology
@article{TAC_2004_13_a4,
     author = {A.R. Garzon and H. Inassaridze and A. del Rio},
     title = {Derivations of categorical groups},
     journal = {Theory and applications of categories},
     pages = {86--105},
     publisher = {mathdoc},
     volume = {13},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a4/}
}
TY  - JOUR
AU  - A.R. Garzon
AU  - H. Inassaridze
AU  - A. del Rio
TI  - Derivations of categorical groups
JO  - Theory and applications of categories
PY  - 2004
SP  - 86
EP  - 105
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_13_a4/
LA  - en
ID  - TAC_2004_13_a4
ER  - 
%0 Journal Article
%A A.R. Garzon
%A H. Inassaridze
%A A. del Rio
%T Derivations of categorical groups
%J Theory and applications of categories
%D 2004
%P 86-105
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_13_a4/
%G en
%F TAC_2004_13_a4
A.R. Garzon; H. Inassaridze; A. del Rio. Derivations of categorical groups. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 86-105. http://geodesic.mathdoc.fr/item/TAC_2004_13_a4/