Every small Sl-enriched category is Morita equivalent to an Sl-monoid
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 169-171.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that every small category enriched over Sl - the symmetric monoidal closed category of sup-lattices and sup-preserving morphisms - is Morita equivalent to an Sl-monoid. As a corollary, we obtain a result of Borceux and Vitale asserting that every separable Sl-category is Morita equivalent to a separable Sl-monoid.
Classification : 18A25, 18D20
Keywords: Sup-lattices, Morita equivalence, separable category
@article{TAC_2004_13_a10,
     author = {Bachuki Mesablishvili},
     title = {Every small {Sl-enriched} category {is
Morita} equivalent to an {Sl-monoid}},
     journal = {Theory and applications of categories},
     pages = {169--171},
     publisher = {mathdoc},
     volume = {13},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a10/}
}
TY  - JOUR
AU  - Bachuki Mesablishvili
TI  - Every small Sl-enriched category is
Morita equivalent to an Sl-monoid
JO  - Theory and applications of categories
PY  - 2004
SP  - 169
EP  - 171
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_13_a10/
LA  - en
ID  - TAC_2004_13_a10
ER  - 
%0 Journal Article
%A Bachuki Mesablishvili
%T Every small Sl-enriched category is
Morita equivalent to an Sl-monoid
%J Theory and applications of categories
%D 2004
%P 169-171
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_13_a10/
%G en
%F TAC_2004_13_a10
Bachuki Mesablishvili. Every small Sl-enriched category is
Morita equivalent to an Sl-monoid. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 169-171. http://geodesic.mathdoc.fr/item/TAC_2004_13_a10/