Every small Sl-enriched category is
Morita equivalent to an Sl-monoid
Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 169-171
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We show that every small category enriched over Sl - the symmetric monoidal closed category of sup-lattices and sup-preserving morphisms - is Morita equivalent to an Sl-monoid. As a corollary, we obtain a result of Borceux and Vitale asserting that every separable Sl-category is Morita equivalent to a separable Sl-monoid.
Classification :
18A25, 18D20
Keywords: Sup-lattices, Morita equivalence, separable category
Keywords: Sup-lattices, Morita equivalence, separable category
@article{TAC_2004_13_a10,
author = {Bachuki Mesablishvili},
title = {Every small {Sl-enriched} category {is
Morita} equivalent to an {Sl-monoid}},
journal = {Theory and applications of categories},
pages = {169--171},
publisher = {mathdoc},
volume = {13},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2004_13_a10/}
}
Bachuki Mesablishvili. Every small Sl-enriched category is Morita equivalent to an Sl-monoid. Theory and applications of categories, The Carboni Festschrift, Tome 13 (2004), pp. 169-171. http://geodesic.mathdoc.fr/item/TAC_2004_13_a10/