On subgroups of the Lambek pregroup
Theory and applications of categories, Tome 12 (2004), pp. 262-269.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A pregroup is a partially ordered monoid in which every element has a left and a right adjoint. The main result is that for some well-behaved subgroups of the group of diffeomorphisms of the real numbers, the set of all endofunctions of the integers that are asymptotic at $\pm\infty$ to (the restriction to the integers of) a function in the subgroup is a pregroup.
Classification : 91F20, 18B35
Keywords: subpregroups of the Lambek pregroup
@article{TAC_2004_12_a7,
     author = {Michael Barr},
     title = {On subgroups of the {Lambek} pregroup},
     journal = {Theory and applications of categories},
     pages = {262--269},
     publisher = {mathdoc},
     volume = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2004_12_a7/}
}
TY  - JOUR
AU  - Michael Barr
TI  - On subgroups of the Lambek pregroup
JO  - Theory and applications of categories
PY  - 2004
SP  - 262
EP  - 269
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2004_12_a7/
LA  - en
ID  - TAC_2004_12_a7
ER  - 
%0 Journal Article
%A Michael Barr
%T On subgroups of the Lambek pregroup
%J Theory and applications of categories
%D 2004
%P 262-269
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2004_12_a7/
%G en
%F TAC_2004_12_a7
Michael Barr. On subgroups of the Lambek pregroup. Theory and applications of categories, Tome 12 (2004), pp. 262-269. http://geodesic.mathdoc.fr/item/TAC_2004_12_a7/